Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jan W. Bats, ${ }^{\text {a }}{ }^{*}$ Sascha Schäfer ${ }^{\text {b }}$ and A. Stephen K. Hashmi ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut für Organische Chemie, Universität Frankfurt, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail:
bats@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=161 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.088$
Data-to-parameter ratio $=9.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

5-[2-(Hydroxymethyl)phenyl]-N,N-dimethyl-pent-4-ynamide

The title compound, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$, crystallizes with four independent molecules (A, B, C and D) in the asymmetric unit. In the crystal structure, molecules A and C are hydrogen bonded to their symmetry-related molecules to form parallel chains extending in the a direction. Molecules B and D are hydrogen bonded to one another and form alternating zigzag chains running in the c direction. These hydrogen-bonded chains are connected via intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts. The four independent molecules are related by non-crystallographic pseudo-symmetry.

Comment

The title compound, (I), was prepared for an investigation of the addition of nucleophiles to $\mathrm{C} \equiv \mathrm{C}$ triple bonds and $\mathrm{C}-\mathrm{H}$ activation in the benzylic position by homogeneous gold catalysts (Hashmi, 2004).

(I)

Compound (I) crystallizes with four independent molecules (A, B, C and D) per asymmetric unit. The molecular structure of molecule A is illustrated in Fig. 1. The dimensions of all four molecules are very similar. The amide groups are planar; the $\mathrm{O} 2-\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 14$ torsion angles are 175.9 (2), -179.4 (2), 179.2 (2) and $-179.7(2)^{\circ}$ for molecules A, B, C and D, respectively. The N atoms show no significant deviations from planarity; the sum of the three valence angles about the N atoms are $359.9,360.0,360.0$ and 359.9° for $\mathrm{N} 1 A$, $\mathrm{N} 1 B$, $\mathrm{N} 1 C$ and $\mathrm{N} 1 D$, respectively. The angles between the plane of the

Figure 1
The molecular structure of molecule A of compound (I), showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. Molecules B, C and D are very similar.

Received 1 December 2005 Accepted 6 December 2005 Online 14 December 2005

Figure 2
A perspective view down the b axis of the crystal packing of compound (I), showing only the hydrogen-bonded chains of molecules A and C. Hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.

Figure 3
A perspective view down the b axis of the crystal packing of compound (I), showing only the hydrogen-bonded chains of molecules B and D. Hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.
benzene ring and the plane of the N, N-dimethylamide group are 77.2 (1), 82.2 (1), 80.2 (1) and 74.6 (1) ${ }^{\circ}$ for molecules A, B, C and D, respectively. This confirms the similarity of the four molecules.

The $\mathrm{C} 1-\mathrm{O} 1$ bond is coplanar with the benzene ring; the torsion angles $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ are 2.6 (3), 3.9 (4), 1.9 (4) and $0.4(3)^{\circ}$ for molecules A, B, C and D, respectively. This conformation results in contact distances between atoms O1 and H3 of 2.40, 2.43, 2.41 and $2.38 \AA$, for molecules A, B, C and D, respectively.

In the crystal structure the molecules are connected by intermolecular hydrogen bonds between the hydroxyl groups and the keto groups to form chains. Details of the hydrogen bonding are given in Table 1, and the crystal packing is illustrated in Figs. 2 and 3. Molecules A and C are hydrogen bonded to their symmetry-related molecules to form chains extending in the a direction (Fig. 2). Molecules in these chains are related by an a-glide plane. Molecules B and D are hydrogen bonded to one another and form alternating zigzag chains running in the c direction (Fig. 3). The hydrogenbonded chains are connected by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. The crystal packing shows nine different intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions with $\mathrm{H} \cdots \mathrm{O}$ distances between 2.38 and $2.59 \AA$ and five weak intermolecular $\mathrm{C}_{\text {methylene }}-\mathrm{H} \cdots \pi_{\text {phenyl }}$ interactions.

Each of the hydrogen-bonded motifs shows pseudosymmetry. Molecules A and C are related by the pseudorelationship $x_{C} \simeq 0.60-x_{A}, y_{C} \simeq 1.02-y_{A}$ and $z_{C} \simeq \frac{1}{4}+z_{A}$. This is a pseudo-twofold screw axis about $(0.30,0.51, z)$ with a translation of $c / 4$. Thus molecule C and molecule A at $(-x,-y$, $\frac{1}{2}+z$) are related by a pseudo-translation vector $(0.60,1.02$, -0.25). The coordinates of molecules B and D also show a pseudo-relationship: $x_{\mathrm{D}} \simeq x_{B}-0.11, y_{D} \simeq 2.02-y_{B}$ and $z_{D} \simeq$ $\frac{1}{4}+z_{B}$. This is a pseudo-glide plane perpendicular to the b axis through $y=1.01$ with an unusual translation vector of $(-0.11$, $0,0.25)$. Thus molecule D and molecule B, at $\left(\frac{1}{2}+x,-y, z\right)$, are related by a pseudo-translation vector $(-0.61,2.02,0.25)$. This shows the pseudo-symmetry between the $A C$ and $B D$ structures to be very similar.

Experimental

The title compound was prepared using the Sonogashira coupling of 2-iodobenzyl alcohol and N, N-dimethylpent-4-ynamide (Thorand \& Krause, 1998). Single crystals were obtained by evaporation of a solution of (I) in diethyl ether/hexane (1:1 $\mathrm{v} / \mathrm{v})$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=231.29$
Orthorhombic, Pcal_{1}
$a=14.166$ (2) A
$b=12.9093$ (14) \AA
$c=27.669$ (5) A
$V=5060.1(14) \AA^{3}$
$Z=16$
$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART 1K CCD
diffractometer
ω scans
Absorption correction: none
57442 measured reflections 6075 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.088$
$S=1.06$
6075 reflections
637 parameters

Mo $K \alpha$ radiation
Cell parameters from 234 reflections
$\theta=3-23^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=161$ (2) K
Block, colorless
$0.50 \times 0.36 \times 0.30 \mathrm{~mm}$

4295 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.088$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-18 \rightarrow 18$
$k=-16 \rightarrow 16$
$l=-35 \rightarrow 36$

[^0]
organic papers

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $A-\mathrm{H} 1 C \cdots \mathrm{O} 2 A^{\mathrm{i}}$	$0.80(3)$	$1.96(3)$	$2.757(3)$	$173(3)$
O1B-H1F \cdots O2 $D^{\text {ii }}$	$0.84(4)$	$1.92(4)$	$2.747(3)$	$170(3)$
O1 $C-\mathrm{H} 1 I \cdots \mathrm{O} 2 C^{\text {iii }}$	$0.80(3)$	1.96 (3)	$2.759(3)$	$173(3)$
O1 $D-\mathrm{H} 1 L \cdots \mathrm{O} 2 B$	$0.80(3)$	$1.92(3)$	$2.718(3)$	$173(3)$

Symmetry codes: (i) $x+\frac{1}{2},-y+1, z$; (ii) $-x+\frac{1}{2}, y, z-\frac{1}{2}$; (iii) $x-\frac{1}{2},-y+1, z$.
Equivalent reflections, including Friedel pairs, were merged. H atoms attached to C atoms were positioned geometrically and refined as riding atoms $\left[\mathrm{Csp} p^{2}-\mathrm{H}=0.95 \AA, \mathrm{C}_{\text {secondary }}-\mathrm{H}=0.99 \AA\right.$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent C atom $)$, and $\mathrm{C}_{\text {methyl }}-\mathrm{H}=0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\right.$ parent $\mathrm{C}_{\text {methyl }}$ atom $)$. The hydroxyl H atoms were located in difference Fourier maps and refined isotropically $[\mathrm{O}-\mathrm{H}=$ $0.80(3)-0.84$ (4) Å].

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1996); software used to prepare material for publication: SHELXL97.

References

Hashmi, A. S. K. (2004). Gold Bull. 37, 51-65.
Sheldrick, G. M. (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART (Version 4.05) and SAINT (Version 4.05). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thorand, S. \& Krause, N. (1998). J. Org. Chem. 63, 8551-8553.

[^0]: H atoms treated by a mixture of independent and constrained refinement
 $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.04 P)^{2}\right]$
 where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }=0.001$ 。
 $\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
 $\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

